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Abstract—Due to lack of sufficient shape and strength in-
formation about the targets present in the entire image ob-
tained in a wide range of scenarios over a long distance, it is
very hard to detect these targets using the existing detection
methods. In order to solve this problem, this paper proposes
a scattered small target detection algorithm based on singular
value decomposition. First, the detectability of a single target
is analyzed from the perspective of singular values; second,
the detectability of scattered targets is analyzed in terms of
singular values and elementary transformations, based on the
composability of dispersed targets, the dispersed targets can be
combined into a large target using elementary transformations,
on this basis, the conclusion is given that the image containing
dispersed targets and the image containing a large target have the
same detectability; then perform singular value decomposition on
the image that may contain dispersed targets and the standard
residual image which does not contain targets, and obtain their
respective singular value vectors, use these singular value vectors
to calculate the cosine angle which was used to determine whether
the image contains targets or not, if it is confirmed, the targets
are roughly located based on the singular vectors. Finally, the
effectiveness of the algorithm is verified using Monte Carlo
simulation.

I. INTRODUCTION

Due to limitations of imaging hardware equipment and
imaging environment, the potential targets obtained in a wide
range of scenarios over a long distance show some drawbacks
such as insufficient shape and intensity information, the con-
ventional detection methods can not detect the existence of
such targets. However, such missed targets can cause serious
security threat in steel, aviation and other areas [1]-[8].

For small target detection problem, there are methods based
on wavelet transform (WT) [4], mathematical morphology
(MM) [5] and singular value decomposition (SVD) [6]-[8].
The method based on wavelet transform applies multiscale
decomposition on the image that may contain a target, a-
bandons the low-frequency wavelet coefficients, and performs
threshold denoising and enhancement on the high frequency
wavelet coefficients, then reconstructs the image and finally
completes the target detection using threshold segmentation
[4]. Wavelet based method makes good use of multiscale
characteristics of the target, but when the target is very weak,
it is difficult to obtain its multiscale description. Method
based on mathematical morphology uses Top-hat transform
to obtain the target image without of background, enhances

This work was supported by the National Nature Science Foundation of
China (61273170, 61304109, 61174142, 61203094)
*Corresponding Author

Chenglin Wen*
College of Electrical Engineering
Henan University of Technology

Zhengzhou 450001, China
Email: wencl@hdu.edu.cn

Meiqin Liu
College of Electrical Engineering
Zhejiang University
Hangzhou 310027, China
Email: liumeiqin@zju.edu.cn

the target contrast using sharpening operator, and then applies
threshold segmentation to complete the target detection [5].
Method based on mathematical morphology makes good use
of morphological information of the target, but when the shape
information of the small target is insufficient, the detection
performance is poor. SVD-based method in [6] uses the mean
of the singular values of all sub-images as a threshold, and per-
forms threshold segmentation by comparing the threshold with
the mean of singular values of each sub-image to complete
target detection. SVD-based method in [7] uses the squares of
the largest singular values of sub-images as the characteristics
for cluster segmentation to complete target detection. The
detection performance of methods in [6]-[7] is related to the
selection of block size and threshold, which are difficult to
select when the size and intensity information about the target
are insufficient. Both the two SVD-based methods use the local
singular value features, but did not consider the relationship
between the adjacent singular values. The algorithm in [8] uses
the global singular value features to constitute singular value
vectors, and complete the target detection using the cosine
angle of singular value vectors reflecting the relationship be-
tween the neighboring singular values. The detection methods
described above, generally require that the target has sufficient
shape and intensity information and so on, so the target is
difficult to detect when lack of sufficient information.

In order to solve the detection problem which is very
difficult when lack of shape and intensity information about
the target, this paper proposes a detection algorithm for dis-
persed targets based on elementary transformation and SVD.
SVD is an important algebra feature extraction method, the
singular values of image have the characteristics of stability,
scale invariance, transposition invariance, rotating invariance,
shift invariance and mirror invariance[9]-[10], and the singular
vectors of image have the advantage of positioning targets[8].
For the image containing dispersed targets, the accumulation
of dispersed targets in intensity or size will make the incre-
ments of singular values uneven, and for image containing no
targets, its singular values can produce only small disturbance
according to the stability of the singular values. Therefore,
when the cumulative information about intensity or size of
dispersed targets in an image is up to a certain extent, its
singular values can be used as features to distinguish itself
from the image which does not contain targets. Here the cosine
angle of singular value vectors consisting of singular values
is used as a criterion to determine whether the image to be
detected contains targets or not.

Section II discusses the detectability of a single target from
the perspective of the intensity and size change of the target.



Section III discusses the detectability of dispersed targets,
proves that the image containing dispersed targets and the
image containing combined target are with the same detectabil-
ity, on this basis, the cosine angle is used to complete the
detection of scattered targets. Section I'V performs Monte Carlo
simulation to demonstrate the effectiveness of the proposed
algorithm. Section V is a summary and discussion.

II. DETECTABILITY OF SINGLE TARGET

This section discusses the detectability of a single target in
an image. The images occurred in the following paper refer to
the images without of background. Assuming that the intensity
of the target remains unchanged, discuss the impact of its size
changes on the singular values of the image; assuming that the
size of the target remain unchanged, discuss the impact of its
intensity changes on the singular values of the image.

Definition 2.1[11] Denote the residual image wiping off
background by X € R™*", the element of X}, is such that
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where ¢;; is independent and identically distributed standard
Gaussian random variable, d;; can be any real number which
denotes the intensity of a possible target, C' is subset of X
and denotes the target area.

Definition 2.2[10],[13]For a general matrix, denoting X, €
R™*" rank(Xg) = ro, then there exists a m-order unitary
matrix Uy and, a n-order unitary matrix Vj, such that

Xo = UoSoVy" = UorySoro Vor, 2
Where SO = [ S(())TO 8 :|7 SOTO = diag[s[)l? 502, SOTO]’
UO = [U07"U7U0(m—7‘0)] € Rmxm’ UOrU =
[u()lv U2 " * * 5 Uorg | UO(m—T'o) = UQ(rg4+1)s "5 W ]
Vb = [VOT()) VO(n—rU)] € Rnxn’ VOTO = [UOl? Vo2, " * ,UO’I”()]
Vb(n—ro) = [Vo(ro+1)s """ vOn]'

Equation (2) is called singular value decomposition of the
matrix X, {s;};2, are the nonzero singular values of Xy, and
the column vectors of Uy and V are referred to as the left and
right singular vectors respectively.

Definition 2.3[13] Let X = Xy + Xy, 0 < |¢| < 1,
X € R™*™, then the singular value decomposition of X is

X=Usvt =v,5. v’ 3)

where rank(X) = r, the meanings of the symbols in the
formula (3) can be obtained by the corresponding symbols in
the formula (2) after removing the subscript 0.

Theorem 2.1 Let X = X + eXy, X denotes the image
to be detected which conforms to Definition 2.1, and has no
multiple nonzero singular values, namely sp; > sg2 > -+ >
S0rg > S0(ro+1) = S0(ro+2) = " = Sons Xt denotes the
image whose pixel values are zero except for the pixels of
the target in it, suppose that the pixels of the target have
the same value d for simplicity, namely X;(g,h) = d,g =
91,92, s Guw,h = h1, ho,---, h,; according to Definition 2.3
and the convergent power series about € [13], for € = 1, the

power series approximating the singular values of X can be
written as

1
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where 1 <4 < p < rg, and
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In the formula (5), B; consists of five parts. A; de-
notes the projection of X, onto pattern ugvl;. F; rep-
resents the weighted sum squares of projections of X,
onto patterns uOivOT(TO IRTPREE ,uoivg,, G; represents the
weighted sum squares of projections of X; onto patterns
Uo(ro+1)Vogs * * * » UomVag» Fi and G; can be neglected, be-
cause singular vectors vg(ry41),* * *» Von and Ug(ro 1), * " > Uom
correspond to zero singular values and contain no useful
information. For 7 > 1, C; represents the difference between
the weighted sum squares of projections of X; onto patterns
uo(i+1)v()T(i+1), cy Uorg vgm and the weighted sum squares of
projections of X; onto patterns Uo(i—l)vg(i,l), o ugrvdy; Dy
represents the difference between the weighted sum squares
of projections of X; onto patterns uow& +1),-~-,u0ivgro
and the weighted sum squares of projections of X; onto
patterns uOiv&i_l), .. ~,u0w0T1; FE; represents the difference
between the weighted sum squares of projections of X, onto
patterns ug(;+1)Vgg: - - * » Uor, U3; and the weighted sum squares
of projections of X, onto patterns ug(;—1)vg;, - - -  uo1v;. With
the increase of index ¢, the absolute value of C;, D;, F;
will gradually decrease. For ¢ = 1, C; represents the
weighted sum squares of projections of X; onto patterns
Up2Vda,  Uory V. o> D; represents the weighted sum squares
of projections of X; onto patterns w108y, - - -, U01V4y,; Fi
represents the weighted sum squares of projections of X; onto
patterns ugavd, - - -, Uor,vd;. From the above analysis, it can
be concluded that the increase of different singular values may
be uneven, the increment depends on the singular values and
singular vectors containing pattern information.

The target detectability refers to the required minimum
intensity and size of the target when it can be detected. The
intensity of the target in an image refers to the gray value
of the target, and the size of the target in an image refers
to the number of pixels of the target[12]. From the view of
accumulation in intensity or size, the target detectability is
analyzed as follows.



Case 1, assuming the intensity of the target remains un-
changed, increase the size of the target. Assuming the size of
the target in the image X is very small, the target can not be
effectively identified. As is shown in Fig.1(a), the size of the
target is increased, the increase portion of the target is denoted
by A¢, and this increment will cause the changing of A; and
B;, which affect the change of the singular values of X. Since
the intensity of the target remains unchanged, thus for different
increment of target size Ag, the effective area of projection
is partially changed. Fig.1(a) shows that the projection range
of A¢ onto u; is changed to [g1, 92, -, gw]; the projection
range of A¢ onto v; is unchanged, and is still [hy, ho, - - -, h.].
Therefore, the change of singular values mainly depends on the
patterns contained in sub-images of Xy. Let A; = A; + %Bi,
when all the values of A; are relatively close, it shows that
the energy cumulated by the increment of the target size is
insufficient to determine the existence of the target itself, and
the large difference of the values A; indicates that the target
in the image X exists.

Case 2, assuming the size of the target remains unchanged,
increase the intensity of the target. Assuming the intensity of
the target in the image X is very low, the target can not be
effectively detected. Fig.1(b) shows that, the intensity of the
target is increased, the increase part of the target is expressed
as Ac, and this increment will also cause the changing
of A; and B;, which determine the change of the singular
values of X. Since the size of the target remains unchanged,
thus for different increment of target intensity, the effective
area of projection is unchanged. As is shown in Fig.1(b),
the projection range of A¢ onto wu; is still [g1,92, ", Guw);
the projection range of A onto v; is still [hy, ha, -+, h,].
Therefore, the change of singular values mainly depends on
intensity information. Let A; = A; + %Bi, when the values of
A; are relatively close, it shows that the energy cumulated by
the increment of the target intensity is insufficient to determine
the existence of the target itself, and the large difference of the
values A\; indicates that the existence of the target in the image
X is true.

According to the above discussion, in either case, the
energy accumulated from changes of intensity or size of the
target will result in the change of the singular values of X.
When such non-uniform changes of the singular values is up
to a certain extent, an angle will occur between the vector
composed of these singular values and the singular value vector
of the standard residual image containing no target, so the
angle can be used to express this uneven change of singular
values.

III. DETECTABILITY OF SCATTERED TARGETS

This section discusses the detectability of dispersed targets.
If several small targets can be effectively transformed into a
big target through elementary transformations, then the image
containing a number of small targets and the image containing
a big target have consistent detectability.

Definition 3.1[14] Let I € R™ "™ denote the identity
matrix. Apply the elementary row or column transformation
to the identity matrix, and obtain

P(i,j) = Eij + Eji+ Y B (6)
k4,5
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Fig. 1. Sketch of size or intensity accumulation of the target in an image;
(a)assuming the intensity of the target remains unchanged, increase the size of
the target(left), (b)assuming the size of the target remains unchanged, increase
the intensity of the target(right).

where E;; = Ej; = 0, B, = 1(k # ¢,7); the off-diagonal
elements E;; = I;; = 1, and the remainders are zero.

Theorem 3.1 Assuming X € R"™*", exchange the ith
row and the jth row or exchange the ith column and the jth
column, then the form of singular value decomposition of X
remains unchanged.

Proof: By Definition 3.1, apply the elementary row
transformation to the matrix X, and obtain matrix B =
P(i,7)X, where P(i,j) = E;; + Ej; + Y. Egg. In terms of

k#i,j
P(i,§)P(i,5)T = P(i, 5)T P(i,7), it is known that the matrix
P(i,7) is unitary. Apply singular value decomposition to the
matrix X, and denote X = USVT. By definition 2.3, it is
known that the matrix U is unitary, so P(¢, 7)U is unitary [10].
Therefore, the singular value decomposition of the matrix B
can be written as

B = P(i,j)X = P(i, ))USV" = (P(i, )U)SV" ()

Similarly, perform the elementary column transformation on
the matrix X, and obtain the singular value decomposition of
the matrix B as

B = XP(i,j) = USVTP(i,j) = US(VT P(i,5)) ()

Therefore, by the definition of singular value decomposition,
exchange the ith row and the jth row or exchange the
ith column and the jth column, the form of singular value
decomposition of X remains unchanged. ]

Definition 3.2 If the dispersed targets in an image can be
combined into a single large target by elementary transforma-
tions, then this feature is called composability of the scattered
targets; similarly, if the large target in an image can be divided
into scattered targets by elementary transformations, then this
feature is called decomposability of the large target.

Typically, due to the intensity or size information of a
small target is very weak and it is difficult to detect such
target, but a large target combined from dispersed targets is
easier to detect. This is the detectability of scattered targets.
According to Definition 3.2 and Theorem 3.1, it is shown that
if the scattered targets in the image X satisfies composabil-
ity, then the image X containing the scattered targets can
be transformed into the image B containing the big target
through several elementary transformations, and the image



X and the image B have the same form of singular value
decomposition, namely, B = (PU)S(VTQ), where P is
the product of several elementary matrices corresponding to
the elementary row transformations, and @ is the product of
several elementary matrices corresponding to the elementary
column transformations. Therefore, the image containing small
targets and the image containing a big target have the same
singular value vector, in other words, the detectability of the
image X and the image B is consistent in the sense of
elementary transformations.

In fact, as long as the dispersed targets meet the linear
arrangement, in other words, these targets are placed in straight
rows or columns, or any two of these targets have no same row
and column numbers, then these dispersed targets can be effec-
tively combined by elementary transformations. The primary
cause of detectability of the image containing scattered targets
is the energy accumulation of the targets on their arrangement
direction, and in all directions, the energy accumulated along
the arrangement direction is maximum.

From the above discussion, based on the rule of cosine
angle of singular value vectors, the detection algorithm for
dispersed targets is given as follows.

e  Obtain the image X}, containing composible dispersed
targets.

e  Calculate the singular value vector of X and the
singular value vector of the standard residual image
containing no targets, and use these vectors to compute
the cosine angle which is used to determine whether
the image X contains targets, where each element of
the standard residual image is independent and iden-
tically distributed standard Gaussian random variable.

e If the image contains targets, then the rough location
of the dispersed targets is given according to its
singular vectors.

IV. EXPERIMENTAL RESULTS
A. Experiment for Detectability of Targets

Experiment 1, assuming that the average intensity of the
target in an image remains unchanged, test to see how large
the size of the target is when it can be detected. Assuming
that the average intensity of the target is d, the pixel values
of target is located in [d — 1,d + 1]. The sliding interval of
d is [1,29]. For each value of d, let the size of the target
increase from 1 x 1, until the size is large enough for the target
to be detected. TABLE I shows the results of four methods:
singular value vector angle (CA [8]), the wavelet transform
(WT [4]), mathematical morphology (MM [5]) and sub-block
image singular value Mean (MS [6]). The first column of
TABLE I shows the intensity range and the average intensity
of the target, the second, third, fourth and fifth columns give
the size of the target when it can be detected using CA, WT,
MM and MS methods respectively. The symbol ‘x’ in TABLE
I indicates misjudgement, i.e., the detection size is incorrect.
As can be seen from TABLE I, when the mean intensity of the
target is small, due to the impact of noise, WT, MM and MS
methods are likely to cause miscarriage of justice, although
CA method requires a larger size for the target to be detected,
compared to other methods, it is still valid. When the average

TABLE 1. RELATIONSHIP BETWEEN DETECTABILITY AND

SIZE WHEN THE INTENSITY IS FIXED

detectable size
(d-Ld+1}d e T WT [T T MM 5T || MS 6]
[0,2]1 27*%27 X X X
TP 313 x >< ><
D43 R 33 33 53
B3.514 77 33 33
4615 53 33 33 73
5716 53 33 33 73
16817 pEz 33 33 73
[7.918 Pz P55 33 73
8,109 33 x5 33 B
[O.1T110 33 3 33 B
[10. 12111 33 33 33 73
L3112 pI5) T 33 T
[12.14)13 33 T 33 T
[13.15114 P55 T 33 i
[14.16]15 73 &3] 33 |
[15.17116 73 1 33 T
[16.18117 73 3 33 &
[17.19]18 77 3 33 5
[18.20]19 pI5) & 33 |
[19.21]20 pI5) i 33 |
(2022121 77 pE5) 33 73
2123122 G55 T 33 gl
2224123 &3 G55 33 |
(2325124 73 3 33 &
(2426125 73 3 33 1
(2527126 i 3 33 1
(2628127 T pI5) 33 |
[27.29178 T T 33 |
[28.30129 T T 33 73

intensity of the target is less than 9, CA method requires a
size larger than the other three methods for it to be detected,
as the other three methods rely on the local characteristics;
When the average intensity of the target is greater than 9,
CA method requires a size slightly larger than WT and MS
methods, while slightly less than MM method for it to be
detected. Generally speaking, WT, MM and MS methods rely
on local features, when the average intensity of the target is
greater than a certain value, the size of the target has little
influence on its detectability.

Experiment 2, assuming that the size of the target remains
unchanged, test to see how large the intensity of the target is
when it can be detected. Assuming that the size of the target
is Nx N, N €[1,29] . For each size N x N, let the average
intensity d of the target increase from 1, until the intensity is
large enough for the target to be detected, the sliding interval
of dis [d—1,d+1]. TABLE II shows the results of CA, WT,
MM and MS methods. The first column of TABLE II shows
the size of the target, the second, third, fourth and fifth columns
give the sliding interval [d — 1,d + 1] and average intensity d
of the target for it to be detected using CA, WT, MM and MS
methods respectively. The symbol ‘x’ in TABLE II indicates
misjudgment, i.e., the detection intensity is incorrect. As can
be seen from Table II, when the size of the target is less than
10*#10, CA method requires an average intensity larger than
the other three methods for it to be detected; when the size
of the target is greater than 10*10, CA method requires an
average intensity slightly less than WT and MM methods, and
almost the same as MS method. Generally speaking, WT, MM
and MS methods rely on local features, therefore, the impact
of target size on these three methods is less than CA method.

From analysis of the experiment 1 and the experiment 2,



TABLE II. RELATIONSHIP BETWEEN DETECTABILITY AND

INTENSITY WHEN THE SIZE IS FIXED

detectable average intensity

N*N CA 8] WT 4] MM (5] || MS 6]
T || 1222412371 || T8,1018.85 >< [6.817.55
5 | 1131511387 || [7.977.93 >< X
33 [7.018.35 35398 || 351398 || B398
ye [6.377.06 351408 || 241285 || 1241283
55 {4,641 B5412 || 1131195 [ [1311.93
6 [4.614.02 (351406 || 24302 || (131100
757 B34.17 241305 || 1131208 || [0211.07
] B3.53.97 351397 || 241294 || (1.311.94
59 B3.514.07 241295 || 241295 || T1.311.98
0710 || [2.412.96 241296 || 241296 || 1021095
11 [2.412.99 241299 || T1312.02 X
12 || [1312.06 G540z (| 1241295 || 131206
313 || (131198 [2413.06 || 2413.06 || [0.211.06
414 || [1311.99 241296 || 241296 || 1021097
5715 [ (131200 13200 [ BA391 || (1.312.00
16516 || [1.312.00 241301 [ 331399 || 1.312.00
7717 [ [1.311.97 2.413.06 x [T311.97
818 || [1.312.02 T31202 || 337402 X
10519 || [L.3]1.99 (351395 || [2.413.00 || [1.311.99
30720 || [1.3]1.98 (241298 || 331398 || [1.311.98
31931 [1372.00 13200 || 351404 || [1.312.00
25752 [ [1.3]1.99 (35399 || B399 || 021098
2323 [ [1.311.98 131198 || 021100 || [1.311.98
2524 || [021.03 35397 || BAB397 || 24129
7535 || [0.2]1.01 241298 [ 351396 || 1.312.00
26526 || [0.211.04 35399 [ B399 || (3.513.99
37557 [ [0.2]1.00 241300 [ BaB398 || (131200
78738 || [0.2)L.01 351399 || 465500 || 131203
29529 || [0.2]0.99 131200 || B.71599 || [1.312.00
TABLE Ill. RELATIONSHIP BETWEEN DETECTABILITY AND

INTENSITY, NUMBER OF SCATTERED TARGETS

[dq, do] count min max
[0,1] 41(x) 0.3 0.6
[0,2] 32(v/) 0.7 1.3
[0,3] 17(+/) 0.9 1.9
[0.4] 10(/) 6 %)
03] ) 79 30
2] 70,/ T4 6
[1,3] 11(v/) 1.7 2.2
[1.4] ) 2.1 28
[1,5] 5(+/) 2.8 3.5
23] 7)) 23 26
2.4] 50/) 29 31
23] 30) 34 33
[3,4] 3(+/) 3.5 3.6
[3,5] 3(v/) 3.9 4.3
[4,5] 3(v) 4.5 4.6

it is shown that WT, MM and MS methods can successfully
detect the target with a certain size and intensity, but for the
target with smaller size and intensity, the detection perfor-
mance is poor; CA method can decrease the intensity with
the increase of target size for the target to be detected, and
therefore this method provides a feasible way for scattered
small target detection.

TABLE I and TABLE II here are the Monte Carlo simula-
tion results randomly selected.

B. Experiments for Scattered Target Detection

Assuming that the image containing scattered targets has
been obtained, and has the size of 256 x 256, each of the
targets has the size of 4 x 4. Let the leftmost column of
the first scattered target overlap with the 10th column of
the image, and the interval between two adjacent targets is

two pixels, so there are at most 41 dispersed targets in the
image in the sense of elementary transformation. Let the
intensity of each target be in the interval [dy,ds]|, where
d = 0,---,4,dy = 1,---,5,dy < ds, so there are 15
kinds of combinations for d; and d;. The detection algorithm
in section III is validated using these 15 kinds of cases.
TABLE III describes the detection result randomly selected.
The first column of TABLE III shows the interval of the
intensity of the scattered target; the second column of TABLE
IIT gives the number count of scattered targets when they
can be detected, the symbol ‘x’ indicates the detection is
successful, the symbol 4/’ indicates the detection fails; the
third and fourth columns of TABLE III show the minimum
average intensity min and maximum average intensity max
of scattered targets respectively, when they can be detected.
As can be seen from the first row of TABLE III, when the
intensity of the target varies between [0,1], the targets can
not be detected due to the low signal-to-noise ratio. In Fig.2,
the images of the first column correspond to the 15 kinds
of cases shown in TABLE III, the figures of the second and
third columns represent their first left and right singular vectors
respectively. As can be seen from Fig.2, except for the first row
indicating the detection fails, the remaining 14 rows indicate
that the detection is successful, and the rough position can be
indicated by the first left singular vectors and right singular
vectors.

V. CONCLUSION

This paper presents a scattered small target detection algo-
rithm based on SVD and elementary transformation. As long
as the dispersed targets can be combined into a large target
through elementary transformations, the existence of targets
in the image can be determined through the accumulation
of energy. In this paper, only the composable targets are
discussed. However, for the targets which do not satisfy the
composable condition, their detection problem should be re-
served for further consideration. Meanwhile this paper assumes
that the image containing dispersed targets has already been
acquired, in fact, the search algorithms or other methods are
required to obtain the image containing scattered targets. So,
how to get the image containing scattered targets will be the
next work to be considered.
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