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Abstract: The special characteristics of slowly moving infrared targets, such as containing only a few pixels,
shapeless edge, low signal-to-clutter ratio, and low speed, make their detection rather difficult, especially when
immersed in complex backgrounds. To cope with this problem, we propose an effective infrared target detection
algorithm based on temporal target detection and association strategy. First, a temporal target detection model
is developed to segment the interested targets. This model contains mainly three stages, i.e., temporal filtering,
temporal target fusion, and cross-product filtering. Then a graph matching model is presented to associate the
targets obtained at different times. The association relies on the motion characteristics and appearance of targets,
and the association operation is performed many times to form continuous trajectories which can be used to help
disambiguate targets from false alarms caused by random noise or clutter. Experimental results show that the
proposed method can detect slowly moving infrared targets in complex backgrounds accurately and robustly, and
has superior detection performance in comparison with several recent methods.
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1 Introduction

Detecting slowly moving targets in infrared (IR)
sequences is very useful for many vital tasks, such
as low-altitude air defense, air traffic control, and
infrared surveillance (Yang et al., 2012; Zhang and
Guo, 2012; Wang et al., 2013; Zhang et al., 2013).
Since the slowly moving targets acquired from a low-
altitude airspace (such as micro-unmanned aerial ve-
hicles (UAVs) and model airplanes) or the targets
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which are far from the imaging equipment are very
dim and small, they do not have available shapes or
textures. In addition, the captured targets are usu-
ally immersed in heavy noise and clutter, and do not
have rich motion features. Although there are some
related works in the past decades, the detection of
slowly moving targets in heavy noise and clutter is
still a challenging problem.

For slowly moving targets in IR sequences, given
some prior knowledge of shape and velocity, they can
be successfully detected in terms of a target motion
model and template matching. However, the effec-
tive prior knowledge on targets is hard to obtain in
real applications. Furthermore, the sub-pixel veloc-
ities computed from several frames are not enough
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to build precise movement equations. In fact, some
targets, such as UAVs and model airplanes, usually
fly at a very slow speed. Therefore, detecting slowly
moving targets is indeed necessary and is receiving a
lot of attention in recent times.

Some conventional methods, such as constant
false alarm rate (CFAR) (Zhang et al., 2005), max-
mean filter, and max-median filter (Deshpande et al.,
1999), pay attention mainly to suppressing the noise
and clutter of IR images, and can be used well in
the detection of small targets. However, when there
exists heavy clutter or evolving clutter in IR im-
ages, the detection performance of these methods
can severely degrade.

In this study, a detection framework for slowly
moving targets is presented. Temporal filtering, tem-
poral target fusion, and cross-product filtering are
combined to suppress heavy noise and clutter in IR
images first. Then the association strategy is used to
associate the obtained detections and suppress false
alarms further.

The contributions of this paper are to: (1) pro-
pose a temporal target model to suppress heavy noise
and clutter, and (2) present a general framework to
associate targets and suppress false alarms.

2 Related work

A lot of related methods have been proposed to
detect dim targets in the past few decades. These
methods can be generally divided into two classes:
single-frame based and sequence-based methods.
Single-frame based methods usually use the spatial
information within a single frame to detect small and
dim targets. Gao et al. (2013) presented a patch-
image model to detect small targets based on low-
rank decomposition, which could detect dim targets
in fast-moving IR backgrounds. Liu et al. (2013)
proposed an infrared point target detection method
based on template matching and Kalman predic-
tion. The Kalman filter was used to reduce the tar-
get searching region, and template matching, based
on principal component analysis (PCA), provided
more accurate measurements for Kalman prediction.
Chen et al. (2014) proposed a simple small target
detection algorithm based on the contrast mecha-
nism of a human visual system and the derived kernel
model. The algorithm uses a local contrast measure
to obtain the local contrast map, and then adopts an

adaptive threshold to segment the target. Li et al.
(2014) presented a real-time infrared target detection
method under complex conditions. Compressive and
sparse features were combined to obtain effective re-
sults. Dong et al. (2014) used three mechanisms of
a human visual system to detect infrared dim tar-
gets. A group of difference of Gaussian filters was
used to simulate the contrast mechanism and filter
the input image, and then a Gaussian window was
added at the attention point of the dim target. Fi-
nally, the proportional-integral-derivative (PID) al-
gorithm was used to predict the attention point of
the next frame. Because of using multiple features,
this method can detect dim targets well.

Besides single-frame based methods, many
sequence-based methods have also attracted atten-
tion. Silverman et al. (1996) and Zhang et al. (2010)
developed a temporal filter, originally suggested by
the singular value decomposition (SVD) of consecu-
tive images, to detect slow weak targets in an evolv-
ing cloud clutter. Wang et al. (2006) fused the gradi-
ent features of consecutive frames to suppress resid-
ual clutter and reduce false alarms. Kim et al. (2014)
developed a temporal contrast filter to detect super-
sonic small infrared targets, and hysteresis threshold-
based detection was used to further enhance the ac-
curacy of the target position. Gao et al. (2015) en-
hanced the slow dim target through temporal su-
perposition of consecutive residual images. Liu et al.
(2015) proposed a moving target detection approach,
and employed a nonlinear adaptive filter to remove
large fluctuations on temporal profiles. Deng et al.
(2016) combined a spatial local contrast filter and a
temporal local contrast filter to detect the infrared
moving point target. Chen et al. (2016) proposed
a motion saliency detection method, using a tempo-
ral Fourier transform to detect the variation in the
phase spectrum of consecutive color images. How-
ever, these methods could result in false alarms when
detecting dim targets with a low signal-to-clutter ra-
tio (SCR).

Furthermore, some association methods based
on multiple features of consecutive images were pre-
sented. Taj et al. (2006) proposed an object detec-
tion and tracking algorithm based on color change
detection and multiple feature graph matching. Yan
et al. (2012) presented an ensemble framework for
multi-target tracking. This framework computes
association scores by discriminative learning and
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multi-feature integration, and then uses these scores
to associate the tracked targets to the outputs of the
trackers and detectors. However, for most infrared
small targets, some of the features are unavailable,
such as concrete appearance and velocity, and thus
these methods are ineffective.

3 Target detection using temporal fil-
tering and association strategy

Our detection approach is illustrated by the
framework diagram in Fig. 1, containing two parts:
(1) suppression of the complex background based
on temporal max filtering and temporal median fil-
tering, enhancement of the targets by the temporal
target fusion scheme, and reduction of false alarms
based on cross-product filtering; (2) association of
the temporal detections, and suppression of the false
alarms further based on a graph matching model and
a target association strategy.

3.1 Temporal target detection

Let F ∈ R
M×N×L be an IR image sequence,

where L is the number of frames and M × N the
size of each frame. A temporal profile of F at
pixel position (x, y) is described as {F(x, y, k), k =

1, 2, . . . , L}. So, there are M ×N temporal profiles
in total. Moving a slide window along a temporal
profile, the median value (Liu et al., 2015) and the
maximum value in the slide window are obtained

respectively as follows:

Fmed(x, y, k) = median {F(x, y, k + n)}ln=−l, (1)

Fmax(x, y, k) = max {F(x, y, k + n)}ln=−l, (2)

where l is an even number. So, the width of the slide
window is 2l+ 1.

After obtaining the outputs of the median and
maximum filters in terms of Eqs. (1) and (2), we can
extract the target pixels as follows:

Ft
med(x, y, k) = F(x, y, k)− Fmed(x, y, k), (3)

Ft
max(x, y, k) = Fmax(x, y, k)− F(x, y, k). (4)

To enhance the targets and further suppress
noise, we adopt a fusion scheme to use the tempo-
ral information of slowly moving targets. The fusion
scheme can be described as (Wang et al., 2006; Gao
et al., 2015)

Ri
med(x, y) =

i∑

k=i−m+1

Ft
med(x, y, k), (5)

Ri
max(x, y) =

i∑

k=i−m+1

Ft
max(x, y, k), (6)

where i represents the ith image and m is the number
of images in which the target information is required
to be superimposed.

Calculating the temporal fusion values for all
positions (x, y) according to Eqs. (5) and (6), we can
obtain the enhanced target images Ri

med and Ri
max.

Infrared image sequence

Graph
modeling

Greedily
searching

Data association problem Solution

Candidates Final resultFusion result

Max filtering

Temporal fusion
Median filtering Problem formulation Trajectory checking

p

Median-fusion

Max-fusion

Fig. 1 Framework diagram of the proposed method
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Then SVD is used to remove small errors in Ri
med

and Ri
max. So, the reconstructed images R̂

i

med and
R̂

i

max can be obtained.
Since the false alarms in R̂

i

max are chiefly re-
sulted from cloud edges and random noise, and yet
those in R̂

i

med are caused mainly by random noise, a
cross-product filter can be defined to suppress false
alarms:

Ri
p(x, y) = R̂

i

med(x, y)× R̂
i

max(x, y). (7)

Repeat the above process, a sequence of target
frames {Ri

p} can be obtained. Thus, the candidates
{Di} can be extracted from {Ri

p}. The whole pro-
cess of temporal target detection is described in Al-
gorithm 1.

Algorithm 1 Temporal target detection
Input: F ∈ R

M×N×L

Output: {Di}
1: for each i do
2: for each (x, y) do
3: Calculate Ri

p(x, y) using Eq. (7)
4: end for
5: Extract candidates Di from Ri

p

6: end for

3.2 Temporal target association

Although the proposed temporal detection
method can improve the detection performance, the
problem of false detections still exists. Unfortu-
nately, the existence of false alarms could influence
subsequent tasks (e.g., decision-making). To solve
this problem, we propose a framework for target
association and false alarm inhibition based on bi-
partite graph matching and the temporal detection
results.

3.2.1 Graph matching model

Let Di = {di
1, di

2, . . . , di
r} be a set of r can-

didates obtained using Algorithm 1. A trajectory
Tj is defined as a sequence of well-ordered points
{di1

c1 , di2
c2 , . . . , din

cn} such that l + m ≤ i1 < i2 <

. . . < in ≤ L − l and 1 ≤ c1 < c2 < . . . < cn ≤ r.
Given the detections Di and the set of trajectories
T i−1 = {Ti−1

1 , Ti−1
2 , . . . , Ti−1

s } obtained at time
ti−1, the target association problem is formulated as
an assignment problem that associates the detections
Di with the set of trajectories T i−1.

Let ξi−1 = {ei−1
1 , ei−1

2 , . . . , ei−1
s } be the set of

end points of the trajectories in T i−1; these points
are selected from detections Di−1 or other former
detections, and each trajectory is responsible for one
target. Denote G = (V, E) an edge weighted bi-
partite graph, where V and E are the sets of ver-
tices and edges of G. Given that V = Di

⋃
ξi−1

(Di
⋂
ξi−1 = �), the assignment problem for detec-

tions Di is modeled by the bipartite graph G with
an association score as follows:

argmax
{di

p}

k∑

j=1

4∑

w=1

αw · Ψw(e
i−1
j , di

p)

s.t. ∀(ei−1
a , di

u) and (ei−1
b , di

v) u �= v if a �= b, (8)

ei−1
j , ei−1

a , ei−1
b ∈ ξi−1, di

p, d
i
u, d

i
v ∈ Di,

where Ψw(e
i−1
j , di

p) denotes the association gain be-
tween the detections centered at point ei−1

j and de-
tection di

p, αw is the corresponding weighting param-
eter, and the sum of all weighting parameters is one.
We can compute four types of gains based on the
target position, appearance, energy, and size. The
formulation in Eq. (8) tries to assign one detection
to at most one trajectory such that the matching
between detections and trajectories attains the op-
timum. The association gain for each combination
(ei−1

j , di
p) is described below in detail.

Given position ei−1
j and detection di

p, the posi-
tion gain Ψ1 is computed as

Ψ1(e
i−1
j , di

p) = 1−
dist(ei−1

j , di
p)

ρ
, (9)

where ρ is a normalizing constant and dist() denotes
the Euclidean distance between two points. The ap-
pearance gain Ψ2 is the Bhattacharyya distance be-
tween the gray histogram p̂ of detection di

p and the
gray histogram q̂ of the detection centered at ei−1

j ,
and can be computed as (Comaniciu et al., 2000)

Ψ2(e
i−1
j , di

p) =

l2∑

w=1

√
p̂wq̂w, (10)

where p̂ = {p̂w}l2w=1 and q̂ = {q̂w}l2w=1. The geo-
metric interpretation of Ψ2 is the cosine of the angle
between histograms p̂ and q̂. The larger the value
of Ψ2, the larger the similarity between detection di

p

and the detection centered at ei−1
j . Since the en-

ergy of infrared targets does not involve a dramatic
change in a short span of time and is another efficient
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feature, it can be used to calculate the energy gain
Ψ3:

Ψ3(e
i−1
j , di

p) =
∑

(x,y)∈Ae

R̂
i−1

max(x, y)

−
∑

(x,y)∈Ad

R̂
i

max(x, y), (11)

where Ae is a region of 3 × 3 centered at ei−1
j , Ad

is also a region of 3 × 3 which has the same center
point as di

p, and x, y denote the coordinates of a
point in Ae or Ad. Suppose that the size of the
target centered at ei−1

j is W i−1
e ×Hi−1

e , and that the
size of detection di

p is W i
d ×Hi

d. So, the size gain Ψ4

can be defined as (Taj et al., 2006)

Ψ4(e
i−1
j , di

p) =1− 1

2

(
|W i−1

e −W i
d|

max(W i−1
e ,W i

d)

+
|Hi−1

e −Hi
d|

max(Hi−1
e , Hi

d)

)
. (12)

3.2.2 Detection association

The maximum matching of problem (8) can be
solved using the Hungarian algorithm. The final aim
is to find the best match for each trajectory from the
candidates. Given the detections Di and the set of
trajectories T i−1, the association matrix used by the
Hungarian algorithm can be computed as

S =

⎡

⎢⎢⎢⎣

g11 g21 . . . gr1
g12 g22 . . . gr2
...

...
...

g1s g2s . . . grs

⎤

⎥⎥⎥⎦ , (13)

where gpj (j = 1, 2, . . . , s; p = 1, 2, , . . . , r) is the
association score, calculated by α1 · Ψ1(e

i−1
j , di

p) +

α2 ·Ψ2(e
i−1
j , di

p)+α3·Ψ3(e
i−1
j , di

p)+α4·Ψ4(e
i−1
j , di

p),
di
p and ei−1

j are the detection from Di and the point
from ξi−1 respectively, r = |Di|, and s = |ξi−1|
(| · | represents the number of elements in the set).
Through greedily searching by the Hungarian algo-
rithm, the optimal correspondences between detec-
tions and trajectories are obtained, and then the end
points of the trajectories are updated accordingly.
The overall association algorithm is detailed in Al-
gorithm 2, and some false detections can be inhibited
in the association process.

We can find that strong noise or clutter can
also result in long false trajectories in the output

Algorithm 2 Detection association
Input: {Di}i=l+m, l+m+1, ..., L−l

Output: T L−l

1: Initialize the set of trajectories T i−1 with Di−1

2: for each combination (T i−1, Di) do
3: Compute the association matrix S

4: Obtain the best matches between T i−1 and Di

using the Hungarian algorithm
5: Append the assigned trajectories {Ti−1

j } with the
matched detections {di

p} to form the set T i

6: Delete trajectories that are not assigned for several
times

7: Create new trajectories {Tnew} for unmatched
detections

8: Append {Tnew} to the set T i

9: i− 1← i

10: end for

of Algorithm 2, and the false trajectories are diverse
from the true trajectories produced by real targets.
According to this point, for the set of trajectories
T L−l = {TL−l

1 , TL−l
2 , . . . , TL−l

j , . . .}, we define
a displacement gain measure Δj to distinguish be-
tween the true and false trajectories:

Δj =
∑

n

|xn − xn−1|+ |yn − yn−1|, (14)

where (xn, yn) and (xn−1, yn−1) denote the coordi-
nates of points from TL−l

j . Let θ be the threshold
of displacement gains. If the gain Δj is larger than
θ, the trajectory can be verified as a true trajectory;
otherwise, the trajectory can be considered as a false
trajectory, and should be discarded accordingly.

4 Experimental results

We used four infrared sequences to test the pro-
posed detection method. The first three sequences
(NPA, J2A, and NA23A) were taken by the Amer-
ican Air Force Rome Laboratory, and each of them
contains 95 frames with a size of 244 × 320 pix-
els. The last sequence (IRPL) was taken from the
OTCBVS benchmark (Miezianko, 2006), consisting
of 100 frames with a size of 240 × 320 pixels. To
evaluate the performance of the proposed detec-
tion method, we chose five methods, i.e., nonlinear
adaptive filtering (NAF) (Liu et al., 2015), spatial-
temporal local contrast (STLC) (Deng et al., 2016),
local contrast (LC) (Chen et al., 2014), temporal
contrast (TC) (Kim et al., 2014), and patch-image
(PI) (Gao et al., 2013), as the baseline methods.
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Fig. 2 shows the detection results of the pro-
posed temporal target detection method. Four small
segments were selected respectively from IRPL (a
landing target with clutter of skyline and plants),
NPA (flying targets on a background of wispy
clouds), NA23A (a flying target on a background
of small bright clouds), and J2A (flying targets on a
background of fluffy clouds) for test data. We can
find that the results from Figs. 2b and 2c have wildly
different characteristics. Cloud edges and random
noise are the main clutter in Fig. 2b, but there are
very few cloud edges and random noise in Fig. 2c.
So, the cross-product operation can be used to sup-
press clutter and noise to reduce false alarms. We
can see from Fig. 2d that most clutter and strong
noise is inhibited while detecting targets, but some

small errors still exist. Therefore, the association
strategy based on target movement characteristics is
required to validate false alarms and to improve the
detection performance.

To evaluate the detection performance from a
subjective perspective, Fig. 3 gives the results of our
proposed method and five baseline methods (NAF,
STLC, TC, LC, and PI) on the four IR sequences.
As shown in Figs. 3b–3d, the NAF, STLC, and TC
methods can detect most target pixels through tem-
poral filtering, but the false alarms (such as the cloud
edges and noise in the detection results) still exist
and could degrade the detection performance. As
shown in Figs. 3e and 3f, the LC and PI methods
can detect most target pixels on the IRPL sequence,
but cannot work well on sequences NPA, NA23A,

(a)

IRPL

(b)

NPA

NA23A

J2A

(c) (d)

Fig. 2 Detection results of the proposed temporal target detection method: (a) original images of four
sequences (IRPL, NPA, NA23A, and J2A); (b) detection results of temporal max filtering, temporal target
fusion, and SVD reconstruction; (c) detection results of temporal median filtering, temporal target fusion, and
SVD reconstruction; (d) cross-product filtering of the detection results from (b) and (c)
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(a)

IRPL NPA NA23A J2A

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 3 Comparison of detection results of the proposed method and five baseline methods on four sequences
(IRPL, NPA, NA23A, and J2A): (a) original images; (b) nonlinear adaptive filtering (NAF) method; (c)
spatial-temporal local contrast (STLC) method; (d) temporal contrast (TC) method; (e) local contrast (LC)
method; (f) patch-image (PI) method; (g) our proposed method
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and J2A with bright cloud clutter. This is because
the NAF, STLC, and TC methods can make full
use of the target and clutter information of consec-
utive frames, but the LC and PI methods use only
the spatial target information, and do not consider
the movement characteristics of the slowly moving
targets. As shown in Figs. 3b–3d, the temporal
cloud edges and noise are easily mistaken for tar-
gets. Although the NAF method has better detec-
tion performance in comparison with the STLC and
TC methods, when further suppressing clutter by
normal threshold segmentation, some target pixels
can be considered as false alarms, and be discarded.
Therefore, multiplication of two temporal filters and
association of moving targets are necessary to im-
prove the temporal detection result. As shown in
Fig. 3g, the proposed method can not only suppress
the cloud clutter and strong noise very well, but also
detect the target pixels more accurately than the
baseline methods.

The detection performance can also be evalu-
ated by varying the detection thresholds for respec-
tive methods. For any method, each threshold cor-
responds to a pair (Pa, Pd). All the pairs are then
plotted to form a receiver operating characteristic
(ROC) curve by defining Pd as a function of Pa.
The probabilities of correct detection (Pd) and false-
alarm (Pa) are respectively defined as follows (Gao
et al., 2013; Bae, 2014):

Pd =
number of correctly detected pixels

number of actual target pixels
, (15)

Pa =
number of incorrectly detected pixels

number of total false pixels
. (16)

Therefore, the ROC curve can be used to es-
timate the rate of correctly detected target pixels
and incorrectly detected pixels in the result. Note
that a higher score of Pd indicates a better detec-

tion result, and a higher score of Pa specifies a worse
performance.

The probabilities of correct detection and false-
alarm of the proposed method are dependent on the
threshold of displacement gains, but the correct de-
tection rates and the false-alarm rates of the five
baseline methods rely on their respective segmenta-
tion thresholds. Fig. 4 shows the ROC curves of
the proposed method and the five baseline methods
computed using the four IR sequences. The mean
values of Pd and Pa for the six methods are listed in
Table 1. Although the NAF method has a higher av-
erage detection rate than the other methods on the
IRPL sequence, it has a higher false-alarm rate than
the proposed method. Compared with the baseline
methods, the proposed method has the highest av-
erage detection rates and lowest average false-alarm
rates on sequences NPA, NA23A, and J2A.

Figs. 4b–4d also show that for the IR back-
grounds with bright clouds (NPA, NA23A, and J2A),
the temporal filtering methods (such as the proposed
method, NAF, STLC, and TC) have better perfor-
mance than the spatial filtering methods (such as
LC and PI), because the latter cannot effectively
filter out the strong cloud edges while simultane-
ously ensuring high detection rates. For the IR back-
ground with strong noise (IRPL), the spatial meth-
ods (such as the PI method) may achieve better de-
tection results than other temporal methods (such as
the STLC method), by choosing appropriate param-
eters (Fig. 4a). However, in general, the temporal
methods are superior to the spatial methods when
dealing with the IR sequences with slowly moving
complex backgrounds. This is because the former
can model the target and clutter information of con-
secutive frames. To better use the merits of tem-
poral filtering methods and to improve the detection

Table 1 Mean values of Pd and Pa for the proposed method and five baseline methods

Method
Mean value of Pd Mean value of Pa

IRPL NPA NA23A J2A IRPL NPA NA23A J2A

NAF 0.9480 1.0000 0.9230 0.8390 0.0740 0.1230 0.1050 0.0220
STLC 0.3620 0.5030 0.2310 0.4760 0.1040 0.0810 0.1250 0.0700
TC 0.2160 0.2490 0.0960 0.2490 0.1690 0.1080 0.0980 0.0920
LC 0.0920 0.0770 0.0770 0.1100 0.1520 0.0720 0.0890 0.0950
PI 0.2710 0.1070 0.0770 0.1060 0.0740 0.0750 0.0750 0.0740

Proposed 0.9300 1.0000 1.0000 1.0000 0.0010 0.0010 0.0020 0.0003

NAF: nonlinear adaptive filtering method; STLC: spatial-temporal local contrast method; TC: temporal contrast
method; LC: local contrast method; PI: patch-image method
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Fig. 4 ROC curves of the proposed method and five baseline methods obtained from sequences IRPL (a),
NPA (b), NA23A (c), and J2A (d)

performance, the proposed method suppresses heavy
noise and clutter using two complementary temporal
filters (see Fig. 2), and moreover inhibits false alarms
in terms of the association strategy and movement
characteristics of moving targets. Although some
baseline methods, such as the NAF method, can de-
tect the target trajectory effectively, the number of
targets in an IR sequence is still not known. Differ-
ent from the baseline methods, based on the target
trajectories obtained, the proposed method can de-
termine the target number and suppress the false
alarms further. We can find that for the IRPL se-
quence, the minimum Pd (estimating the precision of
a target trajectory) of the proposed method is only
0.93, but it is enough to guarantee the existence of a
target trajectory.

Table 2 shows the running time of the proposed
method and five baseline methods on the four IR
sequences. Although the STLC and TC methods
are superior to the other methods from the view of
computation time, they have inferior detection per-
formance. The running time of the proposed method

Table 2 Running time of the proposed method and
five baseline methods on the four sequences

Method
Running time (s)

IRPL NPA NA23A J2A

NAF 53.14 55.71 53.22 52.05
STLC 18.31 23.50 22.09 22.42
TC 10.10 9.71 9.56 9.75
LC 89.51 85.23 85.49 85.36
PI 1020.99 939.97 911.44 890.65

Proposed 51.74 50.19 52.60 50.83

NAF: nonlinear adaptive filtering method; STLC: spatial-
temporal local contrast method; TC: temporal contrast; LC:
local contrast method; PI: patch-image method

can occupy the third place in these six algorithms. It
is only slightly better than that of the NAF method,
but overall the proposed method can achieve better
detection performance than the other methods (see
Table 2 and Figs. 3 and 4).

5 Conclusions

It is rather difficult to detect the slowly moving
targets buried in complex backgrounds due to the
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lack of rich features, such as containing only a few
pixels, shapeless edge, and a low signal-to-clutter
ratio. In this paper, an infrared target detection
algorithm based on temporal filtering and target as-
sociation has been proposed. Bright cloud clutter
and strong noise can be suppressed based on the
proposed temporal target detection model, and false
alarms can be further reduced using the target as-
sociation method. Real data experiments show that
the proposed method has better detection perfor-
mance in comparison with several baseline methods.
Moreover, the temporal filtering methods are supe-
rior to the spatial filtering methods when detecting
small targets immersed in bright cloud backgrounds.
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